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Molecular segregation in lyotropic complex fluids: A phenomenological approach
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A phenomenological approach describing the formation of segregated lyotropic mesophases from the iso-
tropic solution is proposed. It provides the order-parameter symmetries of the transitions to the main periodi-
cally ordered mesophases. The order-parameter amplitudes are shown to be periodic functions of the prob-
abilities for the surfactant molecules to be in the segregated regions. It allows us to work out the phase
diagrams associated with the isotropic to segregated states. These phase diagrams exhibit regions of stability
for partially and fully segregated states, and for direct and inverted mesopfa$663-651X99)06801-4

PACS numbd(ps): 64.70.Ja, 61.30.Gd

[. INTRODUCTION mechanism which is coupled to the primary segregation or-
der parameter. Finally, we summarize our results and con-
In surfactant solutions, the amphiphilic molecules self-clude (Sec. V.

assemble reversibly into a variety of spatially organized
structures[1]. These include one-dimensionédheetlike, Il. LANDAU THEORY OF SEGREGATION
two-dimensional(cylindrical type, and three dimensionally . ] )
ordered(e.g., cubic, tetragonal, efanesophases, as well as  Let us consider the general symmetry of an isotropic state,
spatially disorderedmicellar solutiong, short-range ordered i.e., the extended Euclidean Grolia=0(3)xXR3, where
(sponge phasgsand orientationally orderethematic, cho- O(3) is the full orthogonal group anék® is the three-
lesterig phases. Several approaches have been used for ddimensional group of continuous translations. The irreduc-
scribing the aggregation and segregation processes leadingiifle representation§lR’s) of E; are spanned by the basis
the formation of lyotropic structures, considered from a dif-functions[8]
ferent point of view: as an assembly of fluid filnison-
t!nuum elasticity approach2]) as ran.dom surfaceéstrin_g @Em(;,gywzeik‘j -FYlm( 0,0), (1)
field theory[3]), as monomers and dimers on a lattioai- j
croscopic lattice modelind4]), as macroscopic objects .
(Landau-Ginzburg approa¢B]), etc. Because of their intrin- Where thek; are the infinite set of wave vectors ending on a
sic self-consistent character, and of the mathematical diffisphere of given radiu|sIZj| and transforming one into another
culty to solve in a general way the problem of segregatiorby the symmetry operations of0(3). The Ylm(m:
(ordering from an isotropic disordered state, the preceding—| ... +1) are the spherical harmonic of order The

models generally assume a specific transition mechal@&m infinite-dimensional IR’s oE5 are denoted®™Xi. For given

or equivalently a given symmetry for the transition order i ‘uaated functiond =™ ded t fruct

parametef7]. The aim of the present work is to provide a m, two cohjugated function *k; are needed fo construct a

general framework for a phenomenological description of theeal (physically irreduciblg representation.

transitions to segregated lyotropic states, starting from the Let pO(F)zcte be the probability density of a given type

isotropic solution, and _taking into account only the orderinggsf molecule in the isotropic state, am(() the correspond-

nature of the segregation mechanism. _ing probability density in a segregated state. The increment
The paper is organized as follows. In Sec. Il we Clarlfy5 — o) — o-(1) can be expanded on th:™

the group-theoretical properties underlying the symmetry p=ps(1) = polr) P S

and thermodynamic features of the transitions between the
isotropic solutions and one, two, or three dimensionally or-

dered lyotropic mesophases. In Sec. lll we show that the
amplitudes of the order-parameter components associated

with a segregation mechanism are periodic functions of thel'he CoefficientSr;m"zi define the components of the infinite-

relevant variables describing the corresponding Orderm%imensional order parametédP) associated with the tran-

mechanism. This allows us to work out the phase diagrams;ti,ns petween the isotropic and segregated states. Since a

in which the isotropic, partially, and fully segregated phaseﬁransition corresponds to an ordering mechanitre, 7™

greesigzgrtgﬂa Itnakse(rawcéslva tgscéﬁlga()f sthren ;Zﬁacgree;k%gy "hecessarily transforms as the IR denote¥Di.e., they cor-
’ onsy y g respond to the sdty®*i) [which will be denoted hereafter as

(m;j)]. This property results from the following arguments:

Sp(1)=3 ™D, 6,0). @
i

*On leave from the University of Amiens, Amiens, France. any IR of E; is constructed from a small IRr() associated
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with the invariance group adne branch(say,k;) of the star TAB't-E . CO'U"‘? ;a),thequirl]ibriumd valtxedsl :’f \;Ihec order-
Kf . which is Gg =S0(2) [9]. Since the “unit cell” of the parameter components for the phases denoted | to V1. Colmn

) i i ) . nature of the corresponding phases.
parent isotropic state is reduced to a single sub@mitecule
or micellg which is invariant under all the symmetry opera- @ (b)

tions of Es, 7, Will necessarily coincide, for an ordering

mechanisn{10], with the identity IR (totally symmetrig of | 7~ 7%~ "Eafo Isotropic
SQ(2) corresponding tan=0. ::I ?klfo’"kz: 7k, =0 éi’;i"ar
oo . .20 iKi T T M T Mk, Mk
D% s spanned by the basis functloﬁgzszge'kl r V= im?iﬂhzzi ijif nk,)  Tetragonal or rhombohedral
where the arbitrarily oriented wave vectd?ﬁbelong tothe VvV me.me,= mic, (7> 7)) C orthorhombic
same star. It follows immediately that tmeh-power invari- VI ¢, g, 7k, P orthorhombic, monoclinic,
ants of the OP componenity( Wj) correspond to products of or triclinic

the basis functions determined by the conditiad® ; k;
=0. Therefore, the variational free-energy denstyni;), tice. The equilibrium values of the corresponding six-, eight-,
associated with the transition from the isotropic state, will, twelve-component order parameters determine the actual
contain invariants of all powens except the linear invariant symmetry of the segregated mesophases. When all the com-
I1(77¢,), which has been implicitly excluded from E@Q) by onents ‘are equal, one gets cubic phases, and the effective
assuming a lowering of symmetry when going from the iso-free-energy density has again the form given by @&g. For
tropic to the segregated state. In particul@ne or twg cu-  unequal components of the order parameter, lower symmetry
bic invariants will be present. Therefore the transition to thephases are stabilized. As an illustration, let us consider the
segregated state is necessarily first order, except eventualjariational free-energy density which is associated with three
at an isolated point of the phase diagrdbandau point  pairs of wave vectors:

where the coefficient of the single cubic invariant vanishes

. . 2 2 2

identically. o Fa( 7k, iy k) = a (o + i + 7y )+ @7k, 7k, 7k,
Depending on the number of nonvanishing independent

|Z,- , and on the respective equilibrium values of H;\(Je dif- +az( nél+ 7;32+ 7733)+--- . 5)

ferent segregated phases can be stabilized below the isotropic
solution, whose symmetries correspond to subgra@psf It may describe seven different segregated mesophases de-

E3_ Thus the lamellar phase of symmeti@ € th) is de- pending on the equilibrium values of thﬁ{i. Their symme-
scribed by one pair of wave vectdfs+|= +7/d. whered is tries are summarized in Table I, as well as the corresponding

the period along the normal to the lamellas. The correspond?/2lues of the order-parameter componens Figures 1a)
ing nonvanishing components of the order parameter fulfiland Xb) show tr21e |0%at|0n20f the phases in the space4of the
the equilibrium conditionp; = 7¢_= ni, which yields the invariantsl;= Wl+ 7],;2+ 7, | 2= 7, Mk, Mk andl ;= 7,

. _ H 4 4
effective free-energy density + ’7122+ T,

. 2 3 4
Fi(mp)=aimtagy tazn;+--. (©))

I1l. PARTIALLY AND FULLY SEGREGATED STATES

Two-dimensional cylindrical mesophases require two pairs DIRECT AND INVERTED MESOPHASES

of wave vectors=k; and =k, (with |K;|=|K,|). One gets The considerations developed in the preceding section
hexagonal G=Cg,), square G=C,,), or C-centered rect- provide a general framework for determining the order-
angular G=C,,) mesophases for, respectively, an angle parameter symmetries for the phase transitions from an iso-
betweerk, andk, of 120°, 90°, or an arbitrary angle. In such tropic solution to segregated mesophases. However, they are
cases, 7 = 7;, and the free-energy density has the forminsufficient for describing a numper of specific features of
given by Eq.(3). If ", F T, primitive rectangular G lyotropic mixtures, such a@) the difference which has to be

- o A o B L made between fully and partially segregated states corre-
=Cy,), monoclinic G=Cy), or triclinic (G=C,) cylindri-  gy5n4ing, respectively, to a maximal and nonmaximal prob-
cal phases are obtained. The corresponding effective fregy,jjir of the surfactant molecules to be in the segregated

energy density is therefore regions, i.e., in partially segregated mesophases such as bi-
2 2 3 2 continuous mesophases the segregated and solvent regions
Fal 7k, k) = aa (g + )+ @z i, = 37 k) are not fully separatedii) the existence of inverte@everse
) 2, micellar phases, which display exchanged configurations
+ag( 771214‘ 77;;2) RER (4)  with respect to the corresponding direct mesoph&&gsn

this section we show that such properties can be included in

Three-dimensional mesophases involve three pairs of indéUr approach by taking into account the dependence on the
pendenk vectors (=K, ,+K,,=Ks) for mesophases display- relevant variational parameters of the amplitudes of the OP

ing a primitive lattice. Four pairs of wave vectors are needed:omponentmgi. . .
for a face-centered lattice, whereas six pairs of independent L€t us denotey the normalized probabilities for the sur-
wave vectors are required for describing a body-centered latactant molecules to be in the segregated regions, in the di-
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. . FIG. 2. (a) Periodic dependence of the order paramefens a
FIG. 1. Locatlgn ((ij ft_hedpglases. cor_resrr])onldlnlg tlo the Order'function of theg;; variable, as given by Eq9). (b) and(c) Normal-
paramgter expansion detined by E@ (@ in the (4,15, ,3) Space ized probability of surfactant molecules as a function of the space
of the invariantsyb) in a cross sectioh; =cte. The notation of the . S .
L . variable|r| in a partially segregate@b) or fully segregatedc) state.
phases is given in Table I. . .
In (c), a andd are, respectively, the thickness of the lamellas and

. . > the period in the direction perpendicular to the lamellas.
rections defined by thk; vectors, and assume the OP com- P Perp

ponentszy to be functions of theiggi variables. The explicit
forms of then,;i(ggi) functions for a given segregated phase k —at ®)
can be obtained by minimizing, with respectzp, the ther- dfi‘ “

modynamic potential:

where ﬂE is the eigenfunction corresponding to the eigen-
n . .
o ol ane. valueaj at which the solutionpg(&;) #0 branches off the
J [ Flo(éx)1+ 21 Gi(Vp)” d"é, ®  solution 7:(0)=0. Taking into account the boundary condi-
tions defining the initial isotropic sta{eﬁf (0)=0] and fully

where the integral is over a volume in tE@i spaceF is the segregated statEn’kf(l)zl],one finds the asymptotically

free-energy density and the Qinszgginvariants account o o solution[13] in the vicinity of the pointa;=aZ
for the fluctuations of theygi with respect to thegﬂgi. Letus  \ihichis expressed as

first consider a transition to a lamellar phase. Using the ef-

fective OP expansiorr(7;) given by Eq.(3) yields the Pl
equation of state 7K(&K) = Tmax SIN 7 &k 9
2, . ~
gd_"zk:al,]ﬁ §a277§+ 2a3772+--- ] 7 where the amplitude;kmax is to be determined by the nonlin-
déy 2 ear terms in Eq(7), and depends on the coefficiergsa,
—aj ,ay,as, ... . Figure 2a) shows the periodic depen-

When the right-hand expansion is restricted to the thirdd fe | _in the direction dicular t
power, Eq.(7) coincides with the general elliptic equation ENCe O17ic/ Mmax ON _5" in t _e |r§c lonr- perpendicu ar. 0
[11] which can be solved exactfi2]. More generally, the the lamellas, determined Byin reciprocal space. Thug is
bifurcation from the solutioryg(0)=0, which corresponds defined in successive intervel§,1] and[1,0] in which 7g

to the nonsegregated isotropic solution, to the solutign takes periodically values corresponding to partially<(f;

= (&) #0, corresponding to a partially or fully segregated <1) or fully (7;i=1) segregated states. Figurefh)2and
state, can be obtained by linearizing Ef). around the value 2(c) represent the normalized probability Pf surfactant mol-
7x(0)=0 [13]. One gets the second-order linear differentialecules as a function of the space variablén a partially
equation segregatedFig. 2(b)] and fully segregatefFig. 2(c)] state.
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aq regated, lamellar phases can be reached from the isotropic
— ISOTROPIC — solution across lines of first-order transitions which merge at
— SOLUTION ——— two symmetric three-phase poirts andN,. More gener-
<\ SPONGE |REVERSED ./ — ally, the phase diagram of Fig. 3 is symmetric with respect to
SPONGE the a; axis (a,=0), or equivalently, with respect to the
k N, / change in sign ofyg: Each .partially or fully seg_regated
= FULLY SRS Ran L L Ll 5 pha_se possesses a symmetric ana_log corresponding to an op-
SEGREG. N, L ZLE”E;LF\{(E . 2 posite sign forz;. Defining negative values of as the
(DIRECT) NP (REVERSED) normalized propablhty for solvent moleculc_es to be in the
PARTIALLY 1 }N4 PARTIALLY segrggated regions leads to the |nter'pre'tat|on that two' sym-
SEGREG. W H SEGREG. metric phases, with respect to the axis, in the phase dia-
(DIRECT) {ﬂ )y (REVERSED) gram of Fig. 3 correspond, respectively, taisect micellar

phase {:>0) and itsreversedanalog (7;<0).Figure 3
FIG. 3. Phase diagram associated with the equation of @tilte ~ shows that the directed-reversed phase transition is first or-
Full, dashed, and dashed-dotted lines are, respectively, first-ordegier, the corresponding first-order transition line being limited
s.econd-order,. and limit of st'ability .Iines. I—!atchgd surfaces. are repy a three-phase poim; and by a four-phase poiM,, at
gions of coexistence of the isotropic solution with the pa_lrtlally O which partially and fully segregated, direct and reversed, me-
::'2’ %i%fgﬁzgzdp%k;stsegi' N2, andN; are three-phase pointls  g,hhaqes merge. Note that when taking into account higher
' degree terms i, the phase diagram of Fig. 3 becomes
asymmetric with respect to theg axis, but its essential fea-
tures remain unchanged, i.e., the direct and reversed me-
sophases still correspond to left- and right-hand side regions
- =, sin|jw&y| . of the phase diagram, although their locations become non-
§|2(F)=AIZZ 5 cogjk-r+e;), (100 symmetric with respect to the; axis.
=t In the phase diagram of Fig. 3, there exists a region within
which expresses the spatial distribution of molecules in théhe isotropic phase which is bounded by a line of first-order
directionr defined byk. &, is the average concentration of ransitions and a metastability line. This regiédenoted
surfactant in the isotropic solution. The normalizing coeffi- SPonge” in the figurg can be depicted as being formed by
cientAg is comprised between 0 andm2/ a system of locally ordered but randomly distributed do-
Introducing the functionyi(&) given by Eq.(9) in the ~ mMains, without long-range spatial correlation. This is remi-
effective free-energy densify,(7;), restricted to the fourth ~niscent of the description proposed for sponge phaséls
power in ¢, one gets, by minimizing;(7g(&;)) with re-  which are locally anisotropic phases with no long-range or-
spect to thet; variable, the equation of state der, and are bounded by the isotropic micellar solution and
by ordered(e.g., lamellar phases. Such an interpretation is
consistent with the sensitivity of sponge phases to external
perturbations, and with their flow birefringent property,
which results from the local anisotropy. The current model
In addition to the isotropic solutionzfz=0 for £&=0), one  of sponge phasgd4] in terms of local bicontinuouamel-

For the one-dimensional periodic lamellar phagecan be
written in the form of a Fourier series:

o 2
7712(9_5{2314'3327&"‘4337];2}:0- 11
K

obtains the fully segregated states foos@/2) £|=0, i.e., lar) domains actually corresponds to the metastability region
for £&=1, and the partially segregated states for the equiliblocated between the isotropic phase and the partially segre-
rium values ofy,: gated lamellar phase. Figure 3 shows as well the existence of

reverse sponge phases, which have been reported experimen-
e . T o 3at \/9a22—32a1a3 tally [15]. Note that the direct and reverse sponge phases
M=SIN 5 &=~ 8a, : 12 eet only at the three-phase pohs.
The preceding results also hold for two- and three-
Accordingly, in constrast to the fully segregated statesfimensional segregated mesophases for which the effective
which correspond to fixed limit values @ (=1), the&;  free-energy density reducesRq(7g), in the case where the
values associated with partially segregated states vary witBrobability £; is the same for the different relevant directions
the phenomenological coefficients iy (7), i.e., with tem- k., ie. for hexagonal, square, or cubic lyotropic me-

perature. h By contrast, when the effective OP componen
Figure 3 shows the phase diagram associated with th%Op ases. By contrast, en the effective OP components

equation of stat€l1) assuminga; is a positive constant, and K dlspla¥ different equilibrium values, or when thg Vérl_
with the corresponding stability conditiord?F, /d¢2=0. ables are independent, Eq8)~(10) have to be generalized.

Thus, the partially and fully segregated lamellar phasesFor example, let us consider the case of a primitive rectan-

which display identical symmetrie3..,,, correspond to dis- gular, cylindr[cal rrjesophase associa_lted with two e_ffective
tinct regions of the phase diagram. These regions are sep&2MPONENtsyy, # 7, , which are functions of the two inde-
rated by lines oecond-order topological transitionshich ~ Pendent variablegy and &, . Using the formF, of the
are determined by the property that the probabijtyeaches free-energy density given by E@}), the minimization of the

its maximum valueg;= 1. The two, partially and fully seg- thermodynamic potentidb) yields two equations of state:
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F, 4 Ay
giAWEi:_& - (=12, (13
nki » ‘¢
N L
where the Laplacian takes the form ; ISOTROPIC ’
SOLUTION
P P L
Anki:F—i_F (i=1,2). (14) N —= !z >
k k . /.
1 2 U | M IR ; ar
\\ 2 K3 ,/
The linearization of Eq(13) around the equilibrium values Tiim \ /' ‘\‘]]IR,/ Ifim
of the 7K in the isotropic solution ng1(0,0)= 1;;;2(0,0)] N \.,’ )\/. '/N
leads to Schidinger-type equations: *y S 4
i3 95 AN
a* . J ///’ LZ\\\\ .
A 77k = g— 77k (i=1,2), (15 e SN
I ‘.7 AN
N5 //// R N N
. . . /'/ ]ILim ]ILim \'\6
which, in the segregated state, possess asymptotically exact e S
solutions of the form 7 N

) FIG. 4. Phase diagram associated with the free-energy density
Nk = 77max fi(ée &) (1=12), (16)  given by Eq.(4), and the equations of stat&7) and(18). The lines
have the same meaning as in Fig. 3. The notation of the phases and
where thefi (&, ,&;,) are periodic functions which can be N-phase points is given in the text.

determined explicitly, taking into account the boundary con-
ditions and the actual periodicities of the rectangular phase. IV. THE SURFACE ENERGY
As in the one-dimensional case, one obtains fully segregated IN THE SEGREGATION MECHANISM

states under the conditions For a full description of the mechanism leading to the

formation of segregated lyotropic mesophases, one has to

Ik Ik ' take into account the elastic surface energy, which deter-
—= —=0 (i=12. (17)  mines the actual shape of the interfaces between the molecu-
IEk,  Iék, lar aggregates and the solvent. Starting from a molecular

solution one obtains the various types of micellar shapes and
Partially segregated states correspond to the equilibrium vatepologies using the Helfrich current approaehlél. In this
ues of ther given by the equations of state approach the primary mechanism for the formation of mi-
celles within an isotropic solution is described by a two-
= component order-paramete€{,C,), whereC; andC, are
—=0 (i=1,2 (18) the principal curvaturel2,16]. For transitions to periodically
Nk, ordered lyotropic states(; ,C,) can be used assecondary
order parameter, which couples to the primary ordering order
but may also be realized if one of the conditiad) is not ~ parameter ;). Two main different types of couplings can
fulfilled. Figure 4 shows the general topology of the phasebe found.
diagram associated with the free-energy density (i) For a transition to a one dimensionally ordered segre-
F2(77|21 , 77122)1 restricted to the fourth powers im;l and 7K, gated statélamellan, one finds a biquadratic coupling which
and satisfying the equations of statd3), (18), and the cor-  Yields the total free-energy density:
responding stability conditions. It contains three partially
segregated phases denoted <t(6,;l< 1,ngz=0), Il(mgl K, & 5,
=1,0<7;,<1) and I(0< i # 7;,<1), their fully segre- Fl7e(é0,]=F1(m(&)+ 5 3%+ 5% (19
gated limit phases|i,41(7;;l=1,77@=0) and |Iim(7l|21= Mk

—1) and the corresponding reverse analogs llg, lllg, where F[ 7.(&J)] is given by Eq.(3) and Eq.(9). J=C,

k., 1R, - It also contains the spong8) and reverse sponge + C, is the total curvature of a symmetric bilay@vhich has
(SR phases as well as three-phase poimg,{N,,Ns,Ng), to be replaced byl—J; in the case of a spontaneously
four-phase pointsN3,N,), a five-phase pointl(;) and a curved bilayer[16], J, being the spontaneous curvature
six-phase pointl(,). The direct-to-reverse phase transitions Minimization of F with respect tal gives a zero spontaneous
-1l g and I~ 117, are first order, whereas phases | apd | equilibrium value forJ in the segregated state, i.e., it corre-
Il and llg, or S and SR can only meet at one point in thesponds to the flat surfaces of the lamell& £ C,=0).

phase diagram. Note again that the exact symmetry of the (ii) For two and three dimensionally ordered mesophases,
phase diagram with respect to thgaxis is lost when taking assuming a single effective order-parameter compomgnt
into account high degree terms fip( 7K, 1;,;2). one has a total free-energy density of the form
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Ar J (i) The OP symmetries associated with the onset of one,
two, and three-dimensional ordered mesophases have been

worked out. They involve a finite number of OP components
74, transforming as the IP%X of the extended Euclidean
group, from which one can deduce the form of the free-
energy density associated with the transition.

FS (i) Taking as variational parameters for the segregation-

ordering mechanism the probabiliti€g for the surfactant

§ molecules to be in the segregated regions, in the directions
5 defined byk?, it has been shown tha;t;gi can always be
; J written as periodic functions ofl;i. Consequently, one ob-

Te tains fully segregated phases as limit stafes ggizl) to

FIG. 5. Temperature dependence of the total curvatuie-  (N€ partially segregated phases<(§ <1), and reverse
duced by a segregation mechanism, as deduced frorfEigwhen  phases as anti-isostructural stateg 0) with respect to
going across partially segregatéBS and fully segregatedFS) their direct analogs 4y >0). These results are reminiscent
phases. of the similar properties shown for displacive reconstructive
transformations in crystalgl7]. It suggests that despite its
weakly first-order character, the transition from the isotropic

K o
_ 22,2 2
Flad &0, J1=Fal &1+ 537 F5md - R0 gouion 1o a segregated periodic phase is of the reconstruc-

. ) ) ] o _ tive type.
which contains a linear-quadratic coupling invariant. Tine (i) In the segregation mechanism, the surface energy
ducedequilibrium value of] in the segregated phase is plays the role of a secondary order parameter. The resulting
s induced curvatures may vary with temperature in the par-
J=— < Uﬁ(fk)- (21) tially segregated states, reaching a limit constant value in the

fully segregated states.

. . . A number of general results concerning the topology of
SinceJ varies as the square of the effective order parametefne phase diagrams of lyotropic systems can also be inferred
the temperature dependence Jowill display two different g, the preceding approach. Thus for a given order-
regimes, which are represented in Fig. 5. After increasing,, ., meter symmetry, only definite ordered mesophases may
almost linearly within the partially segregated state, jnhear pelow the isotropic solution. For example, in the
reaches a constant saturatgd value in the fully segregat ase diagram of Fig. 1 only cubic (1) and Iamella,r(ll)
states. A more complex variety of behaviors can be found,paqeq can be reached directly from the isotropic solution
when more than one effective order-parameter componeili,nss 4 jine of transitions. On the other hand, the phase
rHiagram of Fig. 3 reveals that the region in which the sponge
phase should be found is located between the isotropic phase
and the adjacent partially segregated phase.

or when higher degree invariants Jrare considered in Egs.
(19 and(20).
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