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Molecular segregation in lyotropic complex fluids: A phenomenological approach
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A phenomenological approach describing the formation of segregated lyotropic mesophases from the iso-
tropic solution is proposed. It provides the order-parameter symmetries of the transitions to the main periodi-
cally ordered mesophases. The order-parameter amplitudes are shown to be periodic functions of the prob-
abilities for the surfactant molecules to be in the segregated regions. It allows us to work out the phase
diagrams associated with the isotropic to segregated states. These phase diagrams exhibit regions of stability
for partially and fully segregated states, and for direct and inverted mesophases.@S1063-651X~99!06801-4#

PACS number~s!: 64.70.Ja, 61.30.Gd
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I. INTRODUCTION

In surfactant solutions, the amphiphilic molecules se
assemble reversibly into a variety of spatially organiz
structures@1#. These include one-dimensional~sheetlike!,
two-dimensional~cylindrical type!, and three dimensionally
ordered~e.g., cubic, tetragonal, etc.! mesophases, as well a
spatially disordered~micellar solutions!, short-range ordered
~sponge phases!, and orientationally ordered~nematic, cho-
lesteric! phases. Several approaches have been used fo
scribing the aggregation and segregation processes leadi
the formation of lyotropic structures, considered from a d
ferent point of view: as an assembly of fluid films~con-
tinuum elasticity approach@2#! as random surfaces~string
field theory@3#!, as monomers and dimers on a lattice~mi-
croscopic lattice modeling@4#!, as macroscopic object
~Landau-Ginzburg approach@5#!, etc. Because of their intrin
sic self-consistent character, and of the mathematical d
culty to solve in a general way the problem of segregat
~ordering! from an isotropic disordered state, the preced
models generally assume a specific transition mechanism@6#,
or equivalently a given symmetry for the transition ord
parameter@7#. The aim of the present work is to provide
general framework for a phenomenological description of
transitions to segregated lyotropic states, starting from
isotropic solution, and taking into account only the orderi
nature of the segregation mechanism.

The paper is organized as follows. In Sec. II we clar
the group-theoretical properties underlying the symme
and thermodynamic features of the transitions between
isotropic solutions and one, two, or three dimensionally
dered lyotropic mesophases. In Sec. III we show that
amplitudes of the order-parameter components assoc
with a segregation mechanism are periodic functions of
relevant variables describing the corresponding orde
mechanism. This allows us to work out the phase diagra
in which the isotropic, partially, and fully segregated pha
are inserted. In Sec. IV the role of the surface energy
stressed, and taken as a secondary~nonsymmetry breaking!

*On leave from the University of Amiens, Amiens, France.
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mechanism which is coupled to the primary segregation
der parameter. Finally, we summarize our results and c
clude ~Sec. V!.

II. LANDAU THEORY OF SEGREGATION

Let us consider the general symmetry of an isotropic st
i.e., the extended Euclidean GroupẼ35O(3)3R3, where
O(3) is the full orthogonal group andR3 is the three-
dimensional group of continuous translations. The irred
ible representations~IR’s! of Ẽ3 are spanned by the bas
functions@8#

FkW j

6m
~rW,u,w!5eikW j •rWYm

l ~u,w!, ~1!

where thekW j are the infinite set of wave vectors ending on
sphere of given radiusukW j u and transforming one into anothe
by the symmetry operations ofO(3). The Ym

l (m5
2 l , . . . ,1 l ) are the spherical harmonic of orderl . The
infinite-dimensional IR’s ofẼ3 are denotedDm,kj . For given
m, two conjugated functionsF

6kW j

6m are needed to construct

real ~physically irreducible! representation.
Let r0(rW)5cte be the probability density of a given typ

of molecule in the isotropic state, andrS(rW) the correspond-
ing probability density in a segregated state. The increm
dr5rS(rW)2r0(rW) can be expanded on theFkW j

6m :

dr~rW !5(
kj

hm,kW jFkj

6m~rW,u,w!. ~2!

The coefficientshm,kW j define the components of the infinite
dimensional order parameter~OP! associated with the tran
sitions between the isotropic and segregated states. Sin
transition corresponds to an ordering mechanism,the hm,kj

necessarily transforms as the IR denoted D0,kj , i.e., they cor-

respond to the set(h0,kW j) @which will be denoted hereafter a
(hkW j

)]. This property results from the following argument

any IR of Ẽ3 is constructed from a small IR (t1) associated
771 ©1999 The American Physical Society
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772 PRE 59V. P. DMITRIEV et al.
with the invariance group ofone branch~say,kW1) of the star
kW1* , which is GkW1

5SO(2) @9#. Since the ‘‘unit cell’’ of the
parent isotropic state is reduced to a single subunit~molecule
or micelle! which is invariant under all the symmetry oper
tions of Ẽ3 , t1 will necessarily coincide, for an orderin
mechanism@10#, with the identity IR~totally symmetric! of
SO~2! corresponding tom50.

D0,kj is spanned by the basis functionsFkW j

0
5Y0

0eikW j •rW,

where the arbitrarily oriented wave vectorskW j belong to the
same star. It follows immediately that thenth-power invari-
ants of the OP componentsI n(hkW j

) correspond to products o

the basis functions determined by the conditions( i 51
n kW i

50. Therefore, the variational free-energy densityF(hkW j ),
associated with the transition from the isotropic state, w
contain invariants of all powersn except the linear invarian
I 1(hkW j

), which has been implicitly excluded from Eq.~2! by
assuming a lowering of symmetry when going from the is
tropic to the segregated state. In particular,~one or two! cu-
bic invariants will be present. Therefore the transition to
segregated state is necessarily first order, except event
at an isolated point of the phase diagram~Landau point!
where the coefficient of the single cubic invariant vanish
identically.

Depending on the number of nonvanishing independ
kW j , and on the respective equilibrium values of thehkW j

, dif-
ferent segregated phases can be stabilized below the isot
solution, whose symmetries correspond to subgroupsG of
Ẽ3 . Thus the lamellar phase of symmetry (G5D`h

) is de-

scribed by one pair of wave vectorsukW 6u56p/d, whered is
the period along the normal to the lamellas. The correspo
ing nonvanishing components of the order parameter fu
the equilibrium conditionhkW1

5hkW2
5hkW , which yields the

effective free-energy density

F1~hkW !5a1hkW
2
1a2hkW

3
1a3hkW

4
1¯ . ~3!

Two-dimensional cylindrical mesophases require two pa
of wave vectors:6kW1 and 6kW2 ~with ukW1u5ukW2u). One gets
hexagonal (G5C6v), square (G5C4v), or C-centered rect-
angular (G5C2v) mesophases for, respectively, an angleg

betweenkW1 andkW2 of 120°, 90°, or an arbitrary angle. In suc
cases,hkW1

5hkW2
and the free-energy density has the fo

given by Eq. ~3!. If hkW1
Þ hkW2

, primitive rectangular (G

5C2v), monoclinic (G5CS), or triclinic (G5C1) cylindri-
cal phases are obtained. The corresponding effective f
energy density is therefore

F2~hkW1
,hkW2

!5a1~hkW1

2
1hkW2

2
!1a2~hk2

3 23hkW1

2 hkW2
!

1a3~hkW1

2
1hkW2

2
!21¯ . ~4!

Three-dimensional mesophases involve three pairs of in
pendentk vectors (6kW1 ,6kW2 ,6kW3) for mesophases display
ing a primitive lattice. Four pairs of wave vectors are need
for a face-centered lattice, whereas six pairs of independ
wave vectors are required for describing a body-centered
ll
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tice. The equilibrium values of the corresponding six-, eigh
or twelve-component order parameters determine the ac
symmetry of the segregated mesophases. When all the c
ponents are equal, one gets cubic phases, and the effe
free-energy density has again the form given by Eq.~3!. For
unequal components of the order parameter, lower symm
phases are stabilized. As an illustration, let us consider
variational free-energy density which is associated with th
pairs of wave vectors:

F3~hkW1
,hkW2

,hkW3
!5a1~hkW1

2
1hkW1

2
1hkW1

2
!1a2hkW1

hkW2
hkW3

1a3~hkW1

4
1hkW2

4
1hkW3

4
!1¯ . ~5!

It may describe seven different segregated mesophases
pending on the equilibrium values of thehkW i

. Their symme-
tries are summarized in Table I, as well as the correspond
values of the order-parameter componentshkW i

. Figures 1~a!

and 1~b! show the location of the phases in the space of
invariants I 15hkW1

2
1hkW2

2
1hkW3

2 , I 25hkW1
hkW2

hkW3
, and I 35hkW1

4

1hkW2

4
1hkW3

4 .

III. PARTIALLY AND FULLY SEGREGATED STATES
DIRECT AND INVERTED MESOPHASES

The considerations developed in the preceding sec
provide a general framework for determining the ord
parameter symmetries for the phase transitions from an
tropic solution to segregated mesophases. However, they
insufficient for describing a number of specific features
lyotropic mixtures, such as~i! the difference which has to b
made between fully and partially segregated states co
sponding, respectively, to a maximal and nonmaximal pr
ability of the surfactant molecules to be in the segrega
regions, i.e., in partially segregated mesophases such a
continuous mesophases the segregated and solvent re
are not fully separated;~ii ! the existence of inverted~reverse!
micellar phases, which display exchanged configurati
with respect to the corresponding direct mesophases@1#. In
this section we show that such properties can be include
our approach by taking into account the dependence on
relevant variational parameters of the amplitudes of the
componentshkW i

.

Let us denotejkW i
the normalized probabilities for the su

factant molecules to be in the segregated regions, in the

TABLE I. Column ~a!, equilibrium values of the order-
parameter components for the phases denoted I to VI. Column~b!,
nature of the corresponding phases.

~a! ~b!

I hkW1
5hkW2

5hkW3
50 Isotropic

II hkW1
Þ0,hkW2

5hkW3
50 Lamellar

III 6 6hkW1
5hkW2

5hkW3
Cubic

IV6 6hkW1
,hkW2

5hkW3
(hkW1

.hkW2
) Tetragonal or rhombohedral

V hkW1
,hkW2

5hkW3
(hkW2

.hkW1
) C orthorhombic

VI hkW1
,hkW2

,hkW3
P orthorhombic, monoclinic,
or triclinic
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rections defined by thekW i vectors, and assume the OP com
ponentshkW i

to be functions of thejkW i
variables. The explicit

forms of thehkW i
(jkW i

) functions for a given segregated pha

can be obtained by minimizing, with respect tohkW i
, the ther-

modynamic potential:

E H F@hkW i
~jkW i

!#1(
i 51

n

gi~¹hkW i
!2J dnjkW i

, ~6!

where the integral is over a volume in thejkW i
space.F is the

free-energy density and the Ginzburggi invariants account
for the fluctuations of thehkW i

with respect to thejkW i
. Let us

first consider a transition to a lamellar phase. Using the
fective OP expansionF1(hkW) given by Eq. ~3! yields the
equation of state

g
d2hkW

djkW
2 5a1hkW1

3

2
a2hkW

2
12a3hkW

3
1¯ . ~7!

When the right-hand expansion is restricted to the th
power, Eq.~7! coincides with the general elliptic equatio
@11# which can be solved exactly@12#. More generally, the
bifurcation from the solutionhkW(0)50, which corresponds
to the nonsegregated isotropic solution, to the solutionhkW

5hkW(jkW)Þ0, corresponding to a partially or fully segregat
state, can be obtained by linearizing Eq.~7! around the value
hkW(0)50 @13#. One gets the second-order linear different
equation

FIG. 1. Location of the phases corresponding to the ord
parameter expansion defined by Eq.~5!: ~a! in the (I 1 ,I 2 ,I 3) space
of the invariants;~b! in a cross sectionI 15cte. The notation of the
phases is given in Table I.
-

f-

d

l

g
d2hkW

*

djkW
2 5a1* hkW

* , ~8!

wherehkW
* is the eigenfunction corresponding to the eige

value a1* at which the solutionhkW(jkW)Þ0 branches off the
solutionhkW(0)50. Taking into account the boundary cond
tions defining the initial isotropic state@hkW

* (0)50# and fully

segregated state@hkW
* (1)51#,one finds the asymptotically

exact solution@13# in the vicinity of the point a15a1* ,
which is expressed as

hkW~jkW !5hmax
kW Usin

p

2
jkWU, ~9!

where the amplitudehmax
kW is to be determined by the nonlin

ear terms in Eq.~7!, and depends on the coefficientsg, a1

2a1* ,a2 ,a3 , . . . . Figure 2~a! shows the periodic depen

dence ofhkW /hmax
kW on jkW in the directionrW perpendicular to

the lamellas, determined bykW in reciprocal space. Thus,jkW is
defined in successive intervals@0,1# and @1,0# in which hkW

takes periodically values corresponding to partially (0,hkW

,1) or fully (hkW51) segregated states. Figures 2~b! and
2~c! represent the normalized probability of surfactant m
ecules as a function of the space variablerW in a partially
segregated@Fig. 2~b!# and fully segregated@Fig. 2~c!# state.

r-
FIG. 2. ~a! Periodic dependence of the order parameterhkW as a

function of thejkW variable, as given by Eq.~9!. ~b! and~c! Normal-
ized probability of surfactant molecules as a function of the sp

variableurWu in a partially segregated~b! or fully segregated~c! state.
In ~c!, a and d are, respectively, the thickness of the lamellas a
the period in the direction perpendicular to the lamellas.
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For the one-dimensional periodic lamellar phase,jkW can be
written in the form of a Fourier series:

jkW~rW !5AkW(
j 51

`
sinu j pj0u

j
cos~ jkW•rW1w j !, ~10!

which expresses the spatial distribution of molecules in
direction rW defined bykW . j0 is the average concentration o
surfactant in the isotropic solution. The normalizing coe
cient AkW is comprised between 0 and 2/p.

Introducing the functionhkW(jkW) given by Eq.~9! in the
effective free-energy densityF1(hkW), restricted to the fourth
power in hkW , one gets, by minimizingF1„hkW(jkW)… with re-
spect to thejkW variable, the equation of state

hkW
]hkW

]jkW
$2a113a2hkW14a3hkW

2
%50. ~11!

In addition to the isotropic solution (hkW50 for jkW50), one
obtains the fully segregated states forucos(p/2) ju50, i.e.,
for jk

e51, and the partially segregated states for the equi
rium values ofhk :

hk
e5sin

p

2
jk

e52
3a26A9a2

2232a1a3

8a3
. ~12!

Accordingly, in constrast to the fully segregated sta
which correspond to fixed limit values ofjk

e (51), the jk
e

values associated with partially segregated states vary
the phenomenological coefficients inF1(hk), i.e., with tem-
perature.

Figure 3 shows the phase diagram associated with
equation of state~11! assuminga3 is a positive constant, an
with the corresponding stability condition:d2F1 /djkW

2
>0.

Thus, the partially and fully segregated lamellar phas
which display identical symmetriesD`h, correspond to dis-
tinct regions of the phase diagram. These regions are s
rated by lines ofsecond-order topological transitions, which
are determined by the property that the probabilityjkW reaches
its maximum valuejkW51. The two, partially and fully seg

FIG. 3. Phase diagram associated with the equation of state~11!.
Full, dashed, and dashed-dotted lines are, respectively, first-o
second-order, and limit of stability lines. Hatched surfaces are
gions of coexistence of the isotropic solution with the partially
fully segregated phases.N1 , N2 , andN3 are three-phase points.N4

is a four-phase point.
e

-

-

s

ith

e

s,

a-

regated, lamellar phases can be reached from the isotr
solution across lines of first-order transitions which merge
two symmetric three-phase pointsN1 and N2 . More gener-
ally, the phase diagram of Fig. 3 is symmetric with respec
the a1 axis (a250), or equivalently, with respect to th
change in sign ofhkW : Each partially or fully segregated
phase possesses a symmetric analog corresponding to a
posite sign forhkW . Defining negative values ofjk as the
normalized probability for solvent molecules to be in t
segregated regions leads to the interpretation that two s
metric phases, with respect to thea1 axis, in the phase dia
gram of Fig. 3 correspond, respectively, to adirect micellar
phase (hkW.0) and its reversedanalog (hkW,0).Figure 3
shows that the directed-reversed phase transition is first
der, the corresponding first-order transition line being limit
by a three-phase pointN3 and by a four-phase pointN4 , at
which partially and fully segregated, direct and reversed, m
sophases merge. Note that when taking into account hig
degree terms inF1 , the phase diagram of Fig. 3 becom
asymmetric with respect to thea1 axis, but its essential fea
tures remain unchanged, i.e., the direct and reversed
sophases still correspond to left- and right-hand side reg
of the phase diagram, although their locations become n
symmetric with respect to thea1 axis.

In the phase diagram of Fig. 3, there exists a region wit
the isotropic phase which is bounded by a line of first-ord
transitions and a metastability line. This region~denoted
‘‘sponge’’ in the figure! can be depicted as being formed b
a system of locally ordered but randomly distributed d
mains, without long-range spatial correlation. This is rem
niscent of the description proposed for sponge phases@14#,
which are locally anisotropic phases with no long-range
der, and are bounded by the isotropic micellar solution a
by ordered~e.g., lamellar! phases. Such an interpretation
consistent with the sensitivity of sponge phases to exte
perturbations, and with their flow birefringent propert
which results from the local anisotropy. The current mod
of sponge phases@14# in terms of local bicontinuous~lamel-
lar! domains actually corresponds to the metastability reg
located between the isotropic phase and the partially se
gated lamellar phase. Figure 3 shows as well the existenc
reverse sponge phases, which have been reported experi
tally @15#. Note that the direct and reverse sponge pha
meet only at the three-phase pointN3 .

The preceding results also hold for two- and thre
dimensional segregated mesophases for which the effec
free-energy density reduces toF1(hkW), in the case where the
probabilityjkW is the same for the different relevant directio

kW i , i.e., for hexagonal, square, or cubic lyotropic m
sophases. By contrast, when the effective OP compon
hkW i

display different equilibrium values, or when thejkW i
vari-

ables are independent, Eqs.~7!–~10! have to be generalized
For example, let us consider the case of a primitive rect
gular, cylindrical mesophase associated with two effect
componentshkW1

ÞhkW2
, which are functions of the two inde

pendent variablesjkW1
and jkW2

. Using the formF2 of the
free-energy density given by Eq.~4!, the minimization of the
thermodynamic potential~6! yields two equations of state:

er,
e-
r
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gi DhkW i
5

]F2

]hkW i

~ i 51,2!, ~13!

where the Laplacian takes the form

DhkW i
5

]2hkW i

]jk1

2
1

]2hkW i

]jk2

2 ~ i 51,2!. ~14!

The linearization of Eq.~13! around the equilibrium value
of the hkW i

in the isotropic solution@hkW1
(0,0)5hkW2

(0,0)#
leads to Schro¨dinger-type equations:

Dhki
* 5

a1*

gi
hki

* ~ i 51,2!, ~15!

which, in the segregated state, possess asymptotically e
solutions of the form

hkW i
5hmax

kW i f i ~jkW1
,jkW2

! ~ i 51,2!, ~16!

where thef i (jkW1
,jkW2

) are periodic functions which can b
determined explicitly, taking into account the boundary co
ditions and the actual periodicities of the rectangular pha
As in the one-dimensional case, one obtains fully segreg
states under the conditions

]hkW i

]jkW1

5
]hkW i

]jkW2

50 ~ i 51,2!. ~17!

Partially segregated states correspond to the equilibrium
ues of thehkW i

given by the equations of state

]F

]hkW i

50 ~ i 51,2! ~18!

but may also be realized if one of the conditions~17! is not
fulfilled. Figure 4 shows the general topology of the pha
diagram associated with the free-energy dens
F2(hkW1

,hkW2
), restricted to the fourth powers inhkW1

andhkW2
,

and satisfying the equations of states~17!, ~18!, and the cor-
responding stability conditions. It contains three partia
segregated phases denoted I(0,hkW1

,1,hkW2
50), II(hkW1

51,0,hkW2
,1) and III(0,hkW1

ÞhkW2
,1), their fully segre-

gated limit phases Ilim(hk1
W51,hk2

W50) and IIlim(hkW1
5hkW2

51) and the corresponding reverse analogs IR , IIR , III R ,
Ilim
R , II lim

R . It also contains the sponge~S! and reverse spong
~SR! phases as well as three-phase points (N1 ,N2 ,N5 ,N6),
four-phase points (N3 ,N4), a five-phase point (L1) and a
six-phase point (L2). The direct-to-reverse phase transitio
III-III R and IIlim-II lim

R are first order, whereas phases I and IR ,
II and IIR , or S and SR can only meet at one point in t
phase diagram. Note again that the exact symmetry of
phase diagram with respect to thea1 axis is lost when taking
into account high degree terms inF2(hkW1

,hkW2
).
act

-
e.
ed

l-

e
y

e

IV. THE SURFACE ENERGY
IN THE SEGREGATION MECHANISM

For a full description of the mechanism leading to t
formation of segregated lyotropic mesophases, one ha
take into account the elastic surface energy, which de
mines the actual shape of the interfaces between the mol
lar aggregates and the solvent. Starting from a molec
solution one obtains the various types of micellar shapes
topologies using the Helfrich current approach@2,16#. In this
approach the primary mechanism for the formation of m
celles within an isotropic solution is described by a tw
component order-parameter (C1 ,C2), whereC1 andC2 are
the principal curvatures@2,16#. For transitions to periodically
ordered lyotropic states, (C1 ,C2) can be used as asecondary
order parameter, which couples to the primary ordering or
parameter (hkW i

). Two main different types of couplings ca
be found.

~i! For a transition to a one dimensionally ordered seg
gated state~lamellar!, one finds a biquadratic coupling whic
yields the total free-energy density:

F@hkW~jkW !,J#5F1„hkW~jkW !…1
K

2
J21

d

2
hkW

2
J2, ~19!

where F1@hk(jk)# is given by Eq.~3! and Eq.~9!. J5C1
1C2 is the total curvature of a symmetric bilayer~which has
to be replaced byJ2J0 in the case of a spontaneous
curved bilayer@16#, J0 being the spontaneous curvature!.
Minimization of F with respect toJ gives a zero spontaneou
equilibrium value forJ in the segregated state, i.e., it corr
sponds to the flat surfaces of the lamellas (C15C250).

~ii ! For two and three dimensionally ordered mesophas
assuming a single effective order-parameter componenthkW ,
one has a total free-energy density of the form

FIG. 4. Phase diagram associated with the free-energy den
given by Eq.~4!, and the equations of state~17! and~18!. The lines
have the same meaning as in Fig. 3. The notation of the phases
N-phase points is given in the text.
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776 PRE 59V. P. DMITRIEV et al.
F@hk~jk!,J#5F1@hk~jk!#1
K

2
J2 1

d

2
hk

2J ~20!

which contains a linear-quadratic coupling invariant. Thein-
ducedequilibrium value ofJ in the segregated phase is

J52
d

K
hk

2~jk!. ~21!

SinceJ varies as the square of the effective order parame
the temperature dependence ofJ will display two different
regimes, which are represented in Fig. 5. After increas
almost linearly within the partially segregated state,J
reaches a constant saturated value in the fully segreg
states. A more complex variety of behaviors can be fou
when more than one effective order-parameter compon
has to be taken into account in the segregation mechan
or when higher degree invariants inJ are considered in Eqs
~19! and ~20!.

V. SUMMARY AND CONCLUSIVE REMARKS

In summary, the present paper provides a framework f
phenomenological approach to the phase transitions w
take place between the isotropic solutions and the var
types of lyotropic mesophases. The following results ha
been obtained.

FIG. 5. Temperature dependence of the total curvatureJ in-
duced by a segregation mechanism, as deduced from Eq.~21!, when
going across partially segregated~PS! and fully segregated~FS!
phases.
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~i! The OP symmetries associated with the onset of o
two, and three-dimensional ordered mesophases have
worked out. They involve a finite number of OP compone
hkW i , transforming as the IRD0,ki of the extended Euclidean
group, from which one can deduce the form of the fre
energy density associated with the transition.

~ii ! Taking as variational parameters for the segregati
ordering mechanism the probabilitiesjkW i

for the surfactant
molecules to be in the segregated regions, in the direct
defined byki

W , it has been shown thathkW i
can always be

written as periodic functions ofjkW i
. Consequently, one ob

tains fully segregated phases as limit states~for jkW i
51) to

the partially segregated phases (0<jkW i
,1), and reverse

phases as anti-isostructural states (hkW i
,0) with respect to

their direct analogs (hkW i
.0). These results are reminisce

of the similar properties shown for displacive reconstruct
transformations in crystals@17#. It suggests that despite it
weakly first-order character, the transition from the isotro
solution to a segregated periodic phase is of the reconst
tive type.

~iii ! In the segregation mechanism, the surface ene
plays the role of a secondary order parameter. The resu
induced curvatures may vary with temperature in the p
tially segregated states, reaching a limit constant value in
fully segregated states.

A number of general results concerning the topology
the phase diagrams of lyotropic systems can also be infe
from the preceding approach. Thus for a given ord
parameter symmetry, only definite ordered mesophases
appear below the isotropic solution. For example, in
phase diagram of Fig. 1 only cubic (III6) and lamellar~II !
phases can be reached directly from the isotropic solution~I!
across a line of transitions. On the other hand, the ph
diagram of Fig. 3 reveals that the region in which the spon
phase should be found is located between the isotropic p
and the adjacent partially segregated phase.
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